
AD AOIeo 311 STANFORD UNIV CALIF DEPT OF COMPUTER SCIENCE F/S 12/1 11
STABILITY OF THE FOURIER METHOD.(U)
AUG 77 H KREISS, J OLIGER N00014—75—C—1132

UNCLASSIFIED STAN—C5—7 7—616 NI.. 

L!’i fl U
________

END

2 77



c,
II
~~ —~

STABILITY OF THE FOURIER METHOD

by

Heinz-Otto Kreiss and Joseph Oliger

STAN-CS -77-616
AUGUST 1977

C O M P U T E R  SC I E N C E  D E P A R T M E N T
Schoo l of Humanities and Sciences

STANFORD UNIVERSITY

D D C

NOV 8 1911

(3 1
B

a

__ C..3 ~~~~~~~~~ ~~~~~ “&•, 
_ _ _ _ _ _ _ _ _ _ _ _

___ ~~ ~~ DIS~R1BUT1ON STATEMENT A~~
I Approvsd for public releaM

O~~~~~~~-~j~ 
‘ Dtathbution U~limIt.d

4Njz~~ ’~



~ :~cla~~~~~~ i~~~ _______________________

S E C U R I TY  C L A S S I F IC A T IO N O~ THIS  PAGE (Wii.n ~~~~~~ l , Fe . ~~ f)

DED
~~

n.r ~~~~f I  I U ~~~~~~ A ~~ifl~ I DA  READ INSTR UCTIONS
F~ F ~j r~ I IJ~J%..umLr~ I MI I~~ I’~ ‘~~~~ BEFORE COMPL E TINC~ FORM

I. REi~ o~~~r NUM O L ~ F1 2 GOVT ACCESSION NO. 3. RZGLaL~JLr~S.CA~T ALOG NUMBER

:~~—~~ — 1’ i—o1o .
~ - 

. )
4. T I T L E  (and Sub !f ~~~L~~,.~~~_ ~~~~~~~~ . 

5. TYPE OF’REPORT & PERIOD c~~~~~REO

( ~~i l ~~i~~’~ O~ T~~E ~ O~~~ lEi\ ~ETIiOD , Technical , A .st 1177

- 6. F~~~~ E~~~~~~~~ &~~~~~~~G EPORT NUMBER

_____________________________________________________ 
aiAi~-cs -7( -oip] ’

7. AUTHOR(S)  e. ~O~ T RACT OR GRANT NUM3ER(S)

~ci:~~_u~ / r ~~Ciss ~~~~ os~:pt ~~ O l ife r  O~~i

9. P E R F O R M ~~1G OR GA NI  Z A T I O N  NAME AND A DORESS 10. Pf ’ DGf ~4f ~4 ELEM~~N T. PROJEC r~ 1 ASK
A R E A  & WOR K UNIT ~j~~~~ ERS

~:o:~.p e t.~~r ~~~ ~ nce r / — • .. . 

~
. ,

~~ ax~I o r i ~ .~a. ~~~~~ _____________________________
I I .  CONTROLL ING OFFICE NAME AND ADDRESS .I~~~~~~~~g.a.I~DATE

O f f i  .~c u: ..a;a~. f~~~uarc . / ~~~~~~~~~~~~
of L : c  ~~~~ 

13. NU~~~ ER OF PAGES 

a.  ~~~~~~ ___________________________

14 M O N IT O H I ~~ ., A G E N C Y  NAME & A O D R E S S ( if  d~ if ~~ ent f r o m  C’
~~

nt roh l inê OIhce) 15. SECURITY  CLASS. (of thIs report)

0 . .  :~~~ ~~~~~~~~~~~ i~ ~L 11j. .rra
na: .  ~a~tic: .L~~~ . , .~~ ~cla~’sified 

. 
.‘. IS. . DE C L A S S I F I C A T I O N / D O W N G R A D I N G  

.~~~~~ , .- .~ ~
,. SCHEDULE

~~~~~~~~~~ ~a. ~~~~~~~ — ____________________________

4 D I 5T R I~3 u T f O I ~4 S T A T E M E N T  (of thS~ Rc porf )

DISmIBIYrION STATEMEI’ffT~~
Approved for public releciie

~~~~~~~ i1~ ,1~~a~~1oL: o~ ~i 1 C I . ~.a~..i .L ) n Dj 8tribution Unlim ited

Il DIST R I BU  , ‘.~~ T A T E M E N T  (o f  ~~~ o b s f r n c t  entered in Block 20, If d i f f e re n t f r o m  Ropor t )

~. .JPP L~ iM A t ~ V N O T E S

g v r y  v,ORO~ (ContinuC on r e v e r , e  .,,de ,f n e t e s ~ ar) and Iden t i f y  by blo ck  numb.,) 
—

2~ A O S T R A C ’  (Cont iooo on reve rse e ic l  If ne -e.s.ry and I d e n t i fy  by blocS nuroher )

— L~~1~ paper w~ . icveiop ~ a stab il ity  theory  for  the ;o ~~r i cr  (or pseudo—

.~12 c t ,rai . n.c tho~i for linoar  ~yp~ r fo i ic  and parabolic par t i a l  d i f f e r e n t i a l

~at 1 o~~; ~~~~ va riaH . co f f ic . L~~~~ .~;.

DD ~~~~ 1473 EDI TI ON OF ‘ N O V S S IS O RSOLE TI .
U n c l as s i f i e d

( 
. —/ / .~ 

SECURITY CLASSIF ICAT ION OF THIS PAGE (I4~t.n t).Ia Ent.r~ r~

~1 (  / ~~~~ 



STA BILITY Ci’  T~~ ~lRIEF~ METH ( t)

* **Heinz-Otto Kreiss and Joseph Oliger

fr i  ~~~~ paper we develop i af f i f t y  thecr f ~ for tI:e urfer

~,or :~se’.1o-spe:’ra1’
~ rie ’h od for linear hyperbolic and parahoflc r ar ’ a1

~ L f f e r e n fj a 1  e c ua t fo n s  w it h  variable coeff ic ients .

ourar t insttti~~ of Mathematical Sciences , New ork niverr~ ’’,- ,
2 . 1  ~er-’er . tree 4 ., S.Y. 1( fl12 . Supported in part by the National
Science :“oundation under ran t ATM ?6-1021R .

**Dep ar tn en~. of  ‘omput cr  Ci~ien ce .  tan ford Jniversity . ~anf ord , CA
~L~~C5 .  Supported in  part by the Off ice  of Naval Research under
Contract ::00T114_75_ :-n~~ .

DISTRIBUTION STATE MENT

I Approved for public relea’.;
DIItXthUtiC)Z1 U nlimited 

~j

• ,,.... . 4 , . ,.- .. ___________



1. Introduction

The collocation method based on trigonometric interpolation is

called the Fourier (or pseudo-spactral) method. It has been used

extensively for the con~utation of approximate solutions of partial

differential equations ~ith periodic solutions. A satisfactory

theoretical justification for equations with variable coefficients

has only existed for equations ~ritten in skew synmietric form [~, ~, 7] .

Recent ~or1c of Majda, MaDonough and Osher {8) treats hyperbolic systems

with coefficients.

In this paper ~e develop a stability theory for linear hyperbolic

itn~ parabolic partial differential equations with variable coefficients.

The generalisation of these results to nonlinear equations follows if the

~-roh1o~i has sufficiently smooth solution. We restrict our discussion

to problems in one sj~:rioe dimension. The extension to problems in more

. -aco ~iirairri.1ons is iirnriediate. Error estimates can easily be derived

o;irA~ our results following those in Kreiss and Oliger [7] and Fornberg

[.f 1.
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- .--- ~~ -~~~~~~~~~~~~ _ _ _ _ _ _ _ _

TrigonometriC Interpolat iLs

In th is section we colies . sur e ~~noWni results en ’..riCor. i r ~C

interpolation (see [ ii , ~, 7]~ . l e t  N he a n r ur a l  number ,

h = Cil~~l)~
1, and defi ne grid poi n ts x~, = vii , v = :. lCi , 

:onside r a one-periodic fun~- . iol v~ :•: 4 , v~x) v~x-l ) . whose values

- v(x~~ are known at t i i& ~n i ’d~ o i t t s  x,~,. Ye define a discrete

scalar product and norm by

~u ~x~ ,vtx ) ~h V 
~ .~~: 

~~~~ 
h , ~ ‘~: u . u

l.~ie ~r iConometric  ~olyno~~f . 1  w U :  of de~ ru ’ wh ich  fn t e r p o l a t e :

iii  the poin t s x
~~

, i . e . ,

w
~~

x
~~

) = vtx V = u,l ,~ , . . .. c f.

I: i.n 1~?UC lY given by

.
z ) w ~x — ~ yl.: ~

.

‘re

c . ~~ I a(u~i = (v x / , e

l i r  follows f ran th e orthonormal ity of the ex; otiential function .

( , if u <~ ~m-n~ <
2lrinx 21Timx~,e —

1 ~f m = r  .

A
_ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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The usefulness of trigonometric interpolation stems from the fact

that the smoothness properties of the function are preserved and that

the convergence is rapid for smooth ftnctions. Let the L2-s
calar

product and norm be defined by

1
/ \ — 2 / ~= , uvdx , u = ~u,uJ .

0

We will need the following well known theorem .

Theorem 2.1. If w1,w2 interpolate v1 and v2 , respectively, then

(2 .7 )  
~
wl~

w
~
., )

h 
= twl,w2~ = 

~
vl,v2

)
h and

= ~v1t x ) Y ~ = 
~~

it will  be convenient to work with the following class of functions.

e fj nj . tj on  .1. ~~~~~~~ is the class of all functions v ( x )  which

~ai be developed in a Fourier series

~ ~
) v (x ) ~

w i t h

Cii ) : .  l [ I2 Wu~~ l ] (m ) 1 2 
<

H ~~~ is contathed in the Sobelev space H~ .

We now need the relationship between the Fourier coefficients vfu )

‘4



u t  o~ ven i tu i c t  ion v~x )  and the coeff ic ients  a~~’ of i . s

tC. -un ome:.ric interpolant wtx~ . fhi s is contained ~~. t i e  following

well known result [ ‘4, 7 ] .

tot v be yivel H~ ~
2 .f~ and w ~ iven by t2 ./ ‘ rid

= ~ ~~Cl . ,• ~Hl~ 1) .

..e c-ni ‘.cw tnvesti~ a’.e ttio i-n c of convery cl ic - e of Uio ~~~~ eri olat ink-

~oCinor.inl to a function v\x i , ,

~~~~. i t ~~~~ _c .  let v x ~ i , . . l i  w f ’ h  t t - L , .

\2 .L .~ ~~~~~~~~~~~~~~~~~~~~~ = _____

/ 0. ~~~ 
/ i y~ i -i

:: , ‘r e  C ~~l ~- 2  f 
-

:-i ~2~ - 1 Y ’

~ e wr~~~e ~p ,~~j )  as v ,:-: ) . v .tx~ ~ ~~~~~ where

v. x = ~~, vyo 1e , v~~~x )  i~

n. w . ; t ::~ and w . ( x ) be t he tri onornetrlc interpolants of ~~~~~

v. , :‘: ) , respectivcl:s . ihel; are given by

.
~~ t~~) 1 2~~ii~: (N 

~~ ,W . X) a ~/ 1 /  e • a (v~, ~x .e N

5
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— - ----- ----~~~ —~~- - .—- .~~~~~~~-- -,

wR~
x )  = ~ a

)
(w)e 2

~~~~~ , a~~~~w) = (v x ) , eP
~~~~~

i
h

The trigonometric interpolant of v(x ) is

wl,x ) = w
N
(x) + w R (x -

~~~~ interpolates vN
(x) in the 2N+l points of (2.2), and from

~2 .3)  we have

w
N

(x ) = v
N
(x) -

Therefore ,

v~x ) - w \ x ) Y 2 
~v (x ) w~~X ) I ~

2 
— 

~
vR~

x)H +

since v~~; :-: ) is orthogonal to wR (x
~

. By (2 . lC ) we can write

1
v(U~

+ 1

where

Therefore ,

v. x)~
12 = 

~~ (~ )~ 2 
= 

1 
~ (w) 2 

______

w~ N I 27TU~~~ +l  
— 
(2~~ )

2
~

By Theorem 2.2

(

- 
~~~~~~~ L~~~c

_ _ _ _ _ _ _ _ _ _ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~



v . ~~~ ~~ (w~ ~~ = ~~ ~ tn~~ \2 1J~~i )  )
~S — N (0=—Il j ~--w

N — 2
= 

v~ t’~. U N

~L~-- l , =~~~~ ~~~~~ . ~�. - i~ L~+i

~~~ ~~
. -

~~~~~~~~~~ ~~~
. ~~ V \ 2U~~lH2

w= _ t  j  —~~ ( t 2x r ~~~, ~~. 
t i l l  ~ + 1)’ , i —  -~~~

/ 0

2’~ 
~~ 

çy~-ir /

~~~2a ,~T ’1

i-er:, follows .

hemark. Ibserve that  the cont riiu ions to the error : vH and w~.

ni-c of the same order if i , l~. w . is often .:nllod t h e aliasir~u

err~ r. hoc . we see - hat f is a~. all sr uo I~, thur :Lliasiriu

.Ia~rs no important role.

he followir.u resul’ follows i . r imei l - t ’ el~ from ‘ i.~ las t theorem .

t.r d l l-~r-.~~~.1. Let vIx) ~~~~~~ wi i. > ‘ l j ~~. a nn’ ural

t in . : or. hen

2 .1 1)  U 
~~~ • w ’

~~ 1
— 

~~

7
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. Stabi l i ty  of Fourier Methods

Let v(x~ be a one-periodic function whose values. i~x~~ are

known at the gridpoints x~ = Vh , h = (2N÷l ) 1. If we want to approxi-

mate dv(xv
i/dx we can compute the trigonometric interpolant ~~~~ of

v ’,x l , differentiate it , and use its derivative

N 2~riwx
dw(x

~
)/dx = ~ (2 Tr iw) a(U )) e V

as an approximation of dv
~
x
~
)/dx . The computation of ~~~~ . 

i)  in all

of the gridpoints x,~,. V = 0,1,2,... ,2N can be done using two discrete

f ourier transforms ~DFT
) and 2N complex multipF:ca.1ons. Also , if

we know tha t  v .;-:~ PHi,ll ~ with , > ~~~ ‘hen  .uro3ia ~~ 2 . 1  gives

us the error est imat e

MC
dv~dx - dw/~ c~ —

H-her Ieri’~it ives can be computed analogously .

The ‘h o-se process is linear so it can also be represented ‘isinC

mat r~ x notation . Let

v (v
~
x(),...,v~

x2N
))’ , tdw(x~ )/dx~ .. .,dw~x~~ )/~~c)’ 

11

denote the ~2N~-l) dimensional vector formed of the grid values of

v x 1 arid dw/dx , respectively. Then there is a (2N~l~ ~< Cii i)

i I4~ ~ l.s a vector ‘hen y ’ denotes its transpose and ~~ i t s

conjugate transpose. The same notation will be used for matrices .

- -  

-

~~~~~~

, -



‘sa: ~- ix su b  that

i_ •l .~

Hr!~ r l n  for  the ulen:en ts of • have been computed up . ur: i or-

5 ] .  .e has also sho~~i that S car: be considered -is he l im i t

of H-h er  - sr / I  L H ~her order difference approximations .

he s -n1~ r roduc and turin of ~ and v are defined by t2.i ,

.0 . ,

— ~~~ U
~~

::
V

V Ci/ .. • 

. i 12 
-

e r r o l  several L r e : o r ’ H-s . f ’ oe rern or Ci in  [ t i ]  we

ri -oved ‘he  t o l l / w I n o  lerrcn’L .

‘ .1. 15 ShoW ei~~: i ’  1 : . .  H’
1 

= .~~~~~~.. - i c  eigenvalues of S

ore = 
- 

. - a id  ‘he ~srr - os ‘cool ny e 1 -er:furnm lor s are

= . 1, 0
: — i  

~~~~~~~~~~~~ ~: ~~~~ , = , l , . . . , :L -

he : ,~~t consider He p: rL’xnrn:h l on of Cix) du 1 dx where btx 1

is a smooth one-periodic fnu c- cr.. fl:e operator b x 1 d/d.x is essentially

SIICW e rmit ea r .  b e c a u s e  we can wri r e

‘.14. 1 b x )  d’s~dx lu

where

9



~~~~~~~~~~~ ~~~~~ 
,

= ~ ,hdu/~x 
+ d ( h u  ) ,~~~ ) Ru - ~ dt /dx u -

5 is skew lermitian and F is bounded . There are many prob lems where

R 0. For example, we con write udu , dci in the form

udu~ dx = ~ (udu/dx du~ /dx )

lcw consider tI c par :al differential eauatiori

— I x~~ u/~~x = Sn Ru . ii , = ~u/tt

hen

= ~~~~~~~ cs~ .rc ) tu ..v - ~. , u .u )  t u .R u ) i ’ U . U )  = — ( u , ud’n i d x

‘h we have on eneroy estimate. tf we approximate the above problem by

= ~~~ h . .- E 1~ - 
~~

where
- - db \x )

b x t C 0 ° 0 0

~~ db (x 1

•

0 ::::.. • = 

- 

~~~~~~ ... 

0 b x ~~~) db~ x~~~

- 

__ 1
_ _ 0 0

1hor~ we ob’ ‘tin the sam e ener~ r estimate because

,, p : ’ . + t b ) = -

10.

____________________________________________ I, . ._ - _~~~~.
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I S S hew e i-r n i . ti on and therefore

d
~t V ~

V
h ~~~~~~~~~

Ihe obcvc nrocedure can be generalized considerably . Consider the

:- or-ib clic system

ii = ~Au 
) + Bu - Cu , u =

x x x x

wh ere u denotes a vector funct ion  with n components , A , B, and C

or: n ~ xi matrices , A and B are Hermitian, A is positive definite, and

C nod .‘D/dx are uniformly bounded. We can rewrite this system in the form

( ,  \ 1 \- - - ) U = h-U I ~ ~-t B  U 4- ~B U ’  ~ + ti u ,t -. .-. x 1

C1 = C  - B/ax .

Ye then obtain the ener~ r estima 4 e

u ,u ) f = -2 (u , A U .< ) ~- 2 Real ( u . : 1
u )

v iol , depends solely on the property that ~/ i~x is skew Herm.itian.

:‘bns . we obtain a corresponding estimate if we replace ~/bx by S

n:,d approximate ~~~~~ by

dv - -h i 7 )  

~~~~ 
= ~~ ~ S + SB ~ C

11 
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~ -—~ - - - - - - - - -  
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The estimate is

d 2 -

dt ~~‘h < (v , ( C 1 + Cl)v)h

where we extend our earlier definitions of the discrete norm and inner I r e -

duct in the obvious way . Here v is the vector with vector component s

v(x
~
) and X, 

~~
, a

1~ and ~ are block diagonal matrices with blocks

A (x~ ), B(x ), C1(x ), and S, respectively.

The system of ordinary differential equations ,3.7) can be solved

using an appropriate difference method for ordinary differential

equations. However , the approximation 3 . 7)  requires about twice as

much work as the simpler approximation

dv
= SASv ‘- BSv + Cv

of J.5). Since numerical experience has shown that approximations

of t I r e  fo rm (-1 .81 can be unstable , it is desirable to  f ind ways of

stabilizing ‘hem which are cheaper t o  use than rever ing ~o 
.1~ 7)~ Ye

can achieve this by adding appropriate dissipative or prCiect lye

operators . We will now develop this approach in deta l.

It is easier to do this  if we work within the space T1, of

trigcnometri c polynomials

-
~ ~~2rriwx1~~~ ))  p t x )  = L p(w .’e

A vector funct ion v x  or a matrix function B t x 1 will belong to

if all their  components do. There is a one-to-one correspondence

between a polynomial ‘.9)  and its values

12
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V = ~v (x e, 1 , ..  . ,v ~x21 1 1’

Thus , there is a linear operator P such th at

= v~x 1 . i . e . ,  v~x = ~~ . V = 0 . l ,r , . . . , 2N

v ..o( l :‘~ th en

PSv = dv/d.x

e~ B / x 1 . v(x 1 T.. . Thor: we de fine  w ( x )  = B(x ) *v (x ) to be the

:o::volut ion

w~x)  = B x 1*vt x~ = 

V;~N 
~~(V)e

2
~~~~

with

Y_ ~~~~~ V~2N-i -~~)) for V > 0

~~~~ w~V) =

N

~ B t 0 ) (V - H  + v (V+2N~ l-5)) for V < 0

where we have used the convention that v~W) = = 0 if > H .

B x 1v~x 1 is a trigonometric polynomial of order 2N . By theorem 2.2

its ir1terpolant is given by P/ .x)*v(x). Therefore,

w (x ) = P(B v ) :. B~x)*v(x 1

11
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Lemma 3.2. Let B ’,x ) TN 
be a matrix and v,w € TN be vector funct ion s .

Then

I(w ,B*v ) < max I B ( x )  I Itw l~ IIv~0 < x < l
and, if B is Hermitian,

(w ,B*v ) = ( B*w,v)

Proof. By theorem 2.1 and ~3.l3 )

(w,B*v) = (w ,B*v) h =

If B is Hertnitlan , then

= 

~~ L’~~ h = (Bi
~
w,v)h 

= (B*w,v)

Also,

j ( w ,~~v )  < I ~ I ~~ !~vl~h = max IB( x ) I Iw li livilh h 0 < x  < 1
—

and the lemma is proved.

We can now wr~ te equation ~~~~ as an evolution equation in

via the isornorphiam P.

v~ = (A.
1~* v )  4- BN *v + CN *v

where A, ,B , ,(5, and v are the trigonometric polynomials in Ts N
which interpolate the discrete values A (x

~
), B (x

~
), C(x

~
), v (x

~
),

respectively. The term w = B
N*v X can be written as

w = B
N*vx = Qv + By

114
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wire re

1
— ‘~v~ ~C . - , ‘-. . x

~~~~ . i~ 
)

1 .
‘V — H - .~ — 

‘
:
‘ 

~~

‘ t  follows f rom lemma ~.C H.at  t b u ’. er ’ , ’ / z -  ~ ~~~~~ i -  :~~~~.

C ’ r aigh t forward :~~r 1 i c o I H r  ~ ~ ‘ . i _  ‘ives us

= 1~2,
V + i’.~. ’. - Civ ~ ~~~ . 0 .0  r’ :-: 

=

where

I ~
- 

~~H (c
~~~ 

- , ‘ ~~. - , : . -i- ,H’ for  ~~~~~~

i .1.~ )

- v - - ’~ h - ~~-, ) ’  f o r  w < o

- 
“ 

. ~:: .. ~~~:‘-, I . -1- ) f r  / L

L’.l ’,’1 = 7r1 ~2r ;~ l)

\
. 

~~

. .  t~. ~l ) f o r  ~ 0 -

Pp

(~~.i~~) J11
v - - 

~ 
dB14~/dx ~ v

Therefore, by lemma 5.1’, the operator is bounded if B e P ( i ,N )  wi th
> ../ 1’, certainly if B is twice Continuously differentiable (see Llfl.

in general we can not expect ‘.h~ I t~v , l v )  is bounded independent.

of H . For example , if I.h , x )  = Cii ~
- 

~~
- sin 21rx 1 then

15
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B
N~

O = IF 3~~ l~ -~~,~ -i)  - ~~
. t , ~a )  = 0 if wi ~ 1,1

and

= ~ 
(,2N+1)~~(-N

) 
~ r2~

-H) = ~~ r 2N+l)v (N) , ~2~
w) = 0 if Iw l ~ ::

Therefore , by Parseval ’s relation,

~v ,R2
v) = (2N+l ) Real fv (N ) v ( - N ) )

How assume that there are constants I,I
~ 

and > 1, independent of N , such

that

for ~ ~ 0

h~’ri we o i ’ a i n

H N
~~~~~~~~ v ) I  ~ ir s:, *l) ~ I ;~ ~~~ci . ) .~

u~ 0 u =-fl

-l H
- ~~ ~~~~a )  

~~ 
Ljy lw+2N+l _ u ) I )

-. -N ~

~ r~ -.- o ’ h  0 for T I > N. By (3.19)

I L ~~ ‘y~U)_2N_l_~~)~ ~
- —: ; - ‘

1 
~~~~~~~~ (U ~~( 

1 (w ) I IvtW-2N-l-u ) I

L . ~ I~ (w) I I’~(w- 2N-1-i~) I ~
-~~. 127r ,. I

— ‘- - ‘-. ‘ . —‘-~~~~~~~
-
~..= -, -

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~ ~~~~~~ 
.



h -l P
~~ 

—~~~~~~~ 
~~~~~ 

‘
L ~ - ‘f- - i-  ) V  

~- 
~~~~~~ 

CU:

‘ 1
l1 1 2 . 2- v~-— 

~.= —H I. 7T0 I W = J l

1 
~ ~ w ) I 2 1

-- w=-:: 5~ :_ Iw i* 1 Ci~ ,.C 1

The re is a constant K1 such that

1 .. 
_ _ _

:. j T L I + 1 ‘ ~ (~I~ ÷l~
’ _1

= (l/ 2-~) ( h / ( ’ - l) )  will do. Furthermore, the same estimate holds for

t i e  second sum on the right side of (5 .20) .  We obtain

~~~. . 1) I (v ,R
2

v )  
~~ 

‘ .  . 2 1 / 15) 1’ 
-

(I)— —
~~

whe re

= ~2 H + l ) i r  
If w 

~ 0 . = 0- -1
j . _ W

lonsider the system V.114). We have, using V.15) and ~3.l

= 2 Real ( ( V , ’. 1t~.* v )  I (v,Q,v )  + (v ,Rv 1 +

= _2 (v
~ ,A~,j *v~

) 
~ 2 Real 

~
.V , (C

N 
- 

~ 
ôB~ / O x )  * v)  2 Real ~v , R2v~

l(

_____ -_____ ________ ---.~~~~~ --~~



-_ _.. -~~ - . - . -~~~- - . ..- . -- . . - . --- -- - .- .----- - -- - - -—--- ~~~~~~
. .

A is positive definite by assumption , i.e., there is a constant.

~ > 0 such that A > cjl. Therefore,

= 

~~~~~~~~~ ~

By Parseval’s relation and. (3.21)

I

-2~v ,~~*v ) + 2 Real ~v,R2v) <

2 ~ (~~(2~w)
2+ 

~~~~~~)jv (w)I
2
< 2aIIvII

2
, a = max (-~ (2~~~)’~ ~~~~~~ ).

w-N 0 <  
~~~~~ 

<N

Since ~ > 0, and if ~ > 2, then a is bounded independent of 5, and

13.22 ) and lemma 3.2 give us the energy estimate

< 2 Real ~v, tCN 
- 

~~ 
OBN/ox ) * v)  +

< 2(max IC N 
- 

~~ 
bBN/ Ox i  +

If ~ - ~ then a simple calculaticn gives us

~2N+l)7r < 2’IT(,l + ~~) i.~~?J_ 
-W — (r; _ I w i + 1 ) 2 — N N

Therefore , if 2 Tra ;‘ M
1~~(N~~~

+N
2
) then a in (3 .2.,, )  is nonpositive and w e

obtain the following theorem from (3.22).

Theorem ~.l. If ~, > 3 and 2lra > (~~~c1(~
(1+N 2

) then the solutions of

V.114) satisfy the estimate

18
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1

V . p r  (v , v 1 1 < 2 PoOl cv , 
~~ 

- 

~ OB N/Ox l 
~ V 1

This is entirely satisfactory since it is essentially the same as the

corresponding estimate for the different ia l  equation . i-’urthermore , H can

nir.oiyu be chosen large enough so that ~~~~~~~~~~~~~~~~ N
2), at least in princip le.

‘or hyperbolic equations . A ~~~, the situation is not as good.

this ease we have to control the smoothness of V. Exper ien ce has

5: 0-on t hj o ’ sigher frequency modes can grow If this is not done.

ser m > 1 be a natural number ,

v -  —~

nod let 11,0 v1, V,, by

-. 
~~

‘
= vr , :  - v~ = V - V

1

Uht ~re :11 = (1 - 11 ::. P.: . The smoothing operator H H(j,m,D) mapping

T1: into is defined by

- . .  ~ 27ri:ux.c ’ ) w iv = w ¼ W .e

v(w ) if I~I < ~l -

D~
1v ‘I

w r u.i ’) = ~~~ b t )  if .t~I > ~l - 1)N and I~~w ) i  < 
1

m — 

c2TrIwI ).]

D 1
~v 

1
1 v~ i)

otherwise
c2-rr10 1 1~ Iv~ ) I

1 ~-‘



is a natural number and D is a constant. Thus, only the higher

frequencies are modified, i.e.,

Hv1 = v~ , IHv~ < !vIl

We want to show that H is a very mild form of smoothing .

Lemma 3.3. Let ‘y> 0 be a constant and j a natural number. Consider

the class of functions with

V.27) ~
3u/àx3U 2 <~~

2p~~r2

3.25) (2~N ~~~ 
1 )2J > 2 and D >

then 

H u u

Proof. Let u TN and write it in the form

u = U ~ u where ~ (w) = 0 for H > N1 2 1 m

~~. 2 f )  implies

(

LI_i ii ~12 : II 2/öX~II2 
~~(iiu~Ii2 iu2 I i ) .

by (~~.2P )

20
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2I1U211 ~ IIu~II

Therefore, for w j~ 
0,

I~(,c)I 2 <~~
2( 2 I I  Y 311u1! 2 <2~2(2uIwj ~2Jl~ 11 2

and, the lemma follows.

Instead of (.5.i14) we now consider the approximation

3v
( .t . ,  )) = B~ * flv~ 

‘~ 0N * ~

To see that (5.29) has a unique solution we need.

L cr:una .~~~ 
‘.

~~~ H is a Lipschits continuous operator from T
N into T

N
.

Proof. Let L TN 
and ~~~~ = ~~~~~ i = 1,2. Note that

~ v ’~(o:)~ and arg ~~~
‘

~~( W )  = arg ~~~) ( •) ,  I = 1,2, both

follow from the definition of H. Consider the quantities

- (w)l. We consider th~ee cases. Let

- [ , 1  U ~ N, 
~(2)(~~) = ~( t )

(~~ ) 2 = 1,2)

= 

~ I w i < N , ~~2)(~~) ~ v~~~((n ), 2 = 1,2)

= f ~I Io I < N , u: ~ J1 U J2 3

From the definition of H it follows that w C If tal l < N1 = N(l-l/m).

If ~ c J1, then ~ (1)( )  - ~
(2 )

~~~ I = ~v~~~( w )  - ~
(2 ) ( W ) t .  If

C J1,~ then

I~~ ~
(w) - ~(2)( )  = IK(w) IIv~’~II ~~~~~~~ w) 

- K(w)IIv~
t 

~i i ~~ ~(w)

I~ (w ) ~ ~~~~ 
(w)~

21

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _



_ _ _ _  . - _ _

where K(w) = D/ ( 2 i - i - Iw I ) 3. We assume, without loss of generality,

that 141)11 ~ Ilv~~ ~ I I .  Using the triangle Inequality we obtain

d( w) < IK(w) li4 ’~ I I ~~~~w) 
- K(w) 1142 ) lI 

~~~) i +

Iv (wfl Iv ( w ) I

IK(w) 1142 )~ ~~~~w) 
- K(w) 1142 ) II ~~

jv ( w ) j  !~~~
‘ (

~. ) l

We can bound the first term of our last expression by

K(~~)IjI4U II - 1142
)111 < K(w)iI4 ’~ - 42)11 < K(w)1~v~~~ 

-

since the two corrrplex numbers have equal arguments. We can bound the

second term by I~
(1) ( :/ ) - ~

( 2 )
( w ) i  utilizing the triangle inequality

16 ie~ani the fact that the distance between two points r
1
e 1 and r1’e 

C

is a non-decreasing function of r1 if r1 > r2 . Finally, we obtain

(5.30 ) d(w) < K(w)IIv~~ - v(2 )
j I + Iv~’~ (w ) -

if w € Let w e J3 
and assume without loss of generality that

~ ~(l)~~~ and ~
( 2 )

(~~) = ~
( 2 ) (~~). If I~

(2)
~~~I K (w ) II v ~~~Ij ,

then

d ( s )  < I~~~~(w) - K( w ) II v ~~~I I 
~~~~ 

I + IK(w)Il4 ’~ i I A ( 2 )  
-

Iv I

~ I~ W )~~~~
(2 )

~ W ) I  + IK(w) 114 1) II V 
- K(w)1142)Il A ( 2 )  IIv I Iv I

22
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I~~~~ w - ~
(2)

~~~I + K ( w ) I ! } 4 ~~Il - 1142 ) 111

~ ~~~~(w) - ~~
2)
(w)I + K(o)IIv~

’
~ 

- v(2)II

If 
.
~
( 2 ) ( ) I  < K(w)114 1) II , then it easily follows that

d(w)  ~~~ 1 w  - ~~
2) ( w ) J .  Thu s, if w € J3, d(w) satisfies the

inequality (3.30). Now we estimate

/ \ ~ 
N

- ~2 ) l l 2 
= ~~ d’ (w )
w-N

L I~~
1) (w ) ~~~~

2) ( w ) I 2
I5 S J~,

+ ~ (K(~s)lIv~~~- v
(2)il + l~~~ (w)~~~

2)(w)I)2

< ( 2 + 14~~ (N 1)(N-N 1) ) I l v ~~~ -

which yields the desired result.

From Lemma 3.14 it follows that the operator on the right hand side

of (5 . 29) is Lipschitz continuous and It then follows that (3.29),

wit h initial data, has a unique solution v(t). We will now derive

estimates for the norm of this solution.

We have

= 2 Real (v,vt) = 2 Real (v ,~~ * Hv~ 
+ CN * v)

S

The term (v,CN * 
v)  is easily bounded as before using Lemma 3.2 if

P(a,M) with a > 1/2 , or is continuously differentiable.

23
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We write

(v,BN 
* Hv~

) = (v,BN * (v1)
~~

) + (v,BN * 
( ( v 1)

~ 
- liv,)

splitting v = v1 + v2 and utilizing the fact that H does not

alter the first N1 Fourier components of the vect or it operates on.

We then further split B
N * (v1) in terms of Q and R = R1 + R,.

as bef ore t o obtain

1’ Real (v ,BN * liv,) = 2 Real f ( v ,R1v1) + (v ,R~v1) + (v ,a~ * ( ( v
1

) - Hvx )3

nirer e we have used the fact the ~ is skew-hermitian. Recall that

R1
v
1 

- .iB ,/d.x - ‘s~ which is bounded as before ii’ B C P( a ,M)

a ith ~~ > 5 j .  ~
‘e have

(5~5 1r 2 0~~51 (“ ,O~ * v - 
~~ 

dBN/dx * v1) + 2 Real ( v ,R2v1) +

2 Real (v, ~~ * ( ( v 1)
~ 

- liv,)

the first term is hound e P and converges to the proper estimate for the

s i ffe rent ial equation. We will now construct bounds for the last two

terms. We assume that satisfies (3.19) and obtain, corresponding

to (5 . 20) -

N N
I ( v ,R0v1) I < ~‘r(~~~+l)( I ~~

‘ 9(w) ~
J)0

(5.32) _______________________
-l N

+ I ~ ~
( )  ~ ~~( M )- 1(w+2N*1-~ ) I ) .

w - N
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Utilizing (s.19) we obtain

N N
I ~ ~(w) r ~~(~~~1(w-2N-j -~ ) I  ~w 0

N w-2N-1+N
~~ ~~(~ s)~ ~ 

‘I2m~ I~~ I~1(w-2N-1-~)l ~w=l

N ~-2N-l+N
M, ~~~~ ~ v( w)~ ~ Iv1(w-2N-1-~i ) I  ~w 1

~~ (~~~ )~~~~
2 1iv~ 1l E I~ (w)I ~c u l

i-li ~~~~~ N11v111!l v lt

an.i the second term on the right hand. side of (5.32) also satisfies the

same estimate. We obtain

I(v,R0v1) I  < 2i~rMi(2N
2+N)(~~~ )~ IlvllHIv Ii

V .5 3)

< (3/ (2i~ ) )~~in~N~~~
2 iIv1l j lv ii

We only have the term (v,BN * ( ( v 1)~ 
- liv,) left  to estimate. We

have, via lemma 3.2, that

(5 .3 14) I ( v ,B11~ * ( ( v
~~

)
~ 

- Hv,) I ~ max I BN I II v II I I ( ( v l )x - Hv~ ) II

From the definition of H we have
S
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Il (v ) .. - ~Jv , )~, -
~~ 2 - ~~~~~~ ~~~

1 — 

( 2-.~ H~~ l

(5.55)

~~~~ v~— 

(2m)~~~(j-l)

if j>2.

We can now collect our eati:~ates (3.51 ), (3. 5) , (~~..‘,h )  and (~ .55~
to obtain

Theorem 5.2. Let j  = ~~
, then the solutions of (3.29) satisfy

the estimate

1’ heal (v,CN * v - ~~ dR
~./

dx * v
1

) +

(“ .5~~)

1(e/(2~ Y
-’ 

~~~~~ ~ /(2~ )
3 l ) ) ( m )3- 1~~- max ‘

~ 

-

.

Lt J = :~ > ., then t u e  estimate ( ) . , 5 )  converges to the corresponding

/;.:timlrte for the differential equation as H

If the coefficients are smooth the estimate (5 .55) is quite

satisfactory for sufficiently large N. We have been able to obtain

this estimate by introducing the smoothing operator hi and by requiring

that the coefficients C and B be smooth. A similar estimate can

be obtained, with much less effort, if we acre to alter the definition

of H such that w( - . .) 0 if w~ > N1, or ~( : )  = ~ ( i , ) / ( ( 2 — [ w i - N1 j÷Y~ l~

If (U ~ .> N1 
where [gi , denotes the positive part of g. These are

both linear operators. However, the resulting method s are less occurate.

Convergence estimates can be constructed utilizing the estir - ites

of theorems ~.l and 5.2 following those of Kreiss and Oliger 1( 1 and

26 
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Fornberg [5] and the approximation results of Bube [1}.
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